Spravodlivá hra 5

Translate/Share:

Janko a Marián hrajú na námestí nasledujúcu hru: Janko má 9 kariet: 3 esá (A, ace), 3 kráľov (K, king) a 3 dámy (Q, queen) vo farbách ♣ a ♠. Pred každou hrou sú dobre zamiešané a Marián, po zaplatení 1 piva povie, kde sa bude nachádzať tretie eso. Potom postupne zhora berú karty a ak je posledné eso naozaj na pozícii, ktorú tipol Marián, tak mu Janko zaplatí 4 pivá.

Napríklad:
Marián tipol 6 a karty boli A♠, K♣, A, A♣, … – prehral.
Marián tipol 7 a karty boli J♣, J♠, Q♠, A♣, A, J, A♠, … – vyhral.
Marián tipol 5 a karty boli Q♠, A, J, A♠, A♣, … – vyhral.

Maroško to už nejaký čas sleduje a zdá sa mu, že Marián vyhráva. Aj on chce zarobiť, tak navrhne, že si to zahrá aj on. Janko súhlasí, ale že budú hrať s kompletným balíčkom pokerových kariet (52 kariet, hodnoty: 2, 3, 4, …, 10, J, Q, K, A; každá hodnota je v štyroch farbách: ♣ a ♠). Ak Maroško tipne správne pozíciu posledného (štvrtého) esa, tak mu Janko vyplatí 14 pív. Za hru sa platí 1 pivo.

Kto by celkovo vyhral a koľko by (v priemere) vyhral pri 9 kartách, ak by hrali túto hru 1 000 krát?
Kto by celkovo vyhral a koľko by (v priemere) vyhral pri 52 kartách, ak by hrali túto hru 1 000 krát?

Predpoklad: Marián aj Maroško budú hrať ideálne.

Táto úloha je voľným pokračovaním úloh Spravodlivá hra, Spravodlivá hra 2, Spravodlivá hra 3 a Spravodlivá hra 4 – 50 odtieňov rizika.

Riešenie

Úloha je pomerne jednoduchá. A je ešte jednoduchšia ak si uvedomíme:

  • Posledné eso je prvé eso od konca.
  • Pravdepodobnosť každej postupnosti kariet je rovnaká. Preto každá postupnosť kariet má rovnakú pravdepodobnosť ako otočená postupnosť kariet (odzadu).

Preto stačí riešiť “otočenú” úlohu: Na ktorej pozícii bude prvé eso.

Pravdepodobnosť, že prvé eso bude na:

  1. pozícii: \(p_1 = \frac{4}{52}= \frac{1}{13}\doteq0,076923\)
  2. pozícii: \(p_2 = \frac{48}{52}\cdot\frac{4}{51}= \frac{48}{51}\cdot\frac{4}{52}\doteq0.072398\)
  3. pozícii: \(p_3 = \frac{48}{52}\cdot\frac{47}{51}\cdot\frac{4}{50}= \frac{48}{51}\cdot\frac{47}{50}\cdot\frac{4}{52}\doteq0.068054\)
  4. atď.

Vidíme, že v princípe násobíme \(\frac{4}{52}\) čoraz menším číslom. Preto v obrátenom príklade je najlepšie tipovať, že prvé eso bude na prvej pozícii.

V pôvodných príkladoch je najlepším tipom posledná karta.

Pri 9 kartách je výhra po 1 000 hrách \(\frac{3}{9}\cdot 1000 \cdot 4\ – 1000 \doteq 333\) pív.

Pri 52 kartách je výhra po 1 000 hrách \(\frac{4}{52}\cdot 1000 \cdot 14\ – 1000 \doteq 77\) pív.